Search results for "thermal [correlation function]"

showing 10 items of 1923 documents

Charge breeding at GANIL: Improvements, results, and comparison with the other facilities

2019

International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…

010302 applied physicsPhysicsTest benchRange (particle radiation)mechanical instrumentstutkimuslaitteetCyclotronThermal ionization01 natural sciences7. Clean energyIon source010305 fluids & plasmaslaw.inventionNuclear physicsion sourcesUpgradeBreeder (animal)Beamlinenuclear physicslawion beam mass spectrometer0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ydinfysiikkaInstrumentation
researchProduct

Surface soil water content estimation based on thermal inertia and Bayesian smoothing

2014

Soil water content plays a critical role in agro-hydrology since it regulates the rainfall partition between surface runoff and infiltration and, the energy partition between sensible and latent heat fluxes. Current thermal inertia models characterize the spatial and temporal variability of water content by assuming a sinusoidal behavior of the land surface temperature between subsequent acquisitions. Such behavior implicitly supposes clear sky during the whole interval between the thermal acquisitions; but, since this assumption is not necessarily verified even if sky is clear at the exact epoch of acquisition, , the accuracy of the model may be questioned due to spatial and temporal varia…

Soil Water Content Bayesian Smoothing Thermal Inertia MODIS SEVIRI.Meteorologymedia_common.quotation_subjectPolar orbitBayesian SmoothingLatent heatSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliElectrical and Electronic EngineeringWater contentImage resolutionRemote sensingmedia_commonSettore ING-INF/03 - TelecomunicazioniElectronic Optical and Magnetic MaterialSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaThermal InertiaComputer Science Applications1707 Computer Vision and Pattern RecognitionSEVIRICondensed Matter PhysicsApplied MathematicGeographyMODISSoil Water ContentSkyGeostationary orbitSurface runoffShortwaveSettore ICAR/06 - Topografia E CartografiaSPIE Proceedings
researchProduct

Contributo alla conoscenza delle proprietà termofisiche delle murature storiche palermitane

2014

This paper presents the preliminary findings of in situ measurements of thermal transmittance taken in a monumental complex in Palermo. The objective of energy efficiency, one of the main aspects of sustainable construction, is now relevant also for historic architecture. The research aims at analysing the energy performance of the stone walls of the complex, characterized by various thickness, age and construction features. Measurements are taken in accordance with the international standard ISO 9869:1994. The U-values so obtained are compared with tabular data from the Italian standard UNI/TS 11300-1:2008 and with values calculated following the UNI EN ISO 6946:2008. Nine preliminary meas…

historic architecturemurature storichecalcarenitestone wallsefficienza energeticatrasmittanza termicaSettore ICAR/10 - Architettura Tecnicathermal transmittance U-valuearchitettura storicaPalermoenergy efficiency
researchProduct

Controlled thermal oxidation of nanostructured vanadium thin films

2016

Abstract Pure V thin films were dc sputtered with different pressures (0.4 and 0.6 Pa) and particle incident angles α of 0°, 20° and 85°, by using the GLancing Angle Deposition (GLAD) technique. The sputtered films were characterized regarding their electrical resistivity behaviour in atmospheric pressure and in-vacuum conditions as a function of temperature (40–550 °C), in order to control the oxidation process. Aiming at comprehending the oxidation behaviour of the samples, extensive morphological and structural studies were performed on the as-deposited and annealed samples. Main results show that, in opposition to annealing in air, the columnar nanostructures are preserved in vacuum con…

010302 applied physicsThermal oxidationMaterials scienceNanostructureAtmospheric pressureAnnealing (metallurgy)Mechanical EngineeringMetallurgyVanadiumchemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesVanadium oxidechemistryMechanics of MaterialsElectrical resistivity and conductivity0103 physical sciencesGeneral Materials ScienceThin filmComposite material0210 nano-technologyMaterials Letters
researchProduct

Heat and mass transfer phenomena

2002

This section deals with main problems of the heat and mass transfer in magnetic colloids. The analysis is mainly based on the general model given in the Chapter written by R. E. Rosensweig. Hydrodynamic and thermal problems are simplified considering incompressible liquids and neglecting the effects of polarization and electric conductivity as well as ignoring some other secondary effects that usually can be neglected in ferrofluid experiments. Contrarily, the analysis of mass transfer accounts for new sedimentation phenomena and cross effects of interrelated heat and mass transfer. Since the description given by Rosensweig is of general theoretical nature, while the present work mainly foc…

PhysicsConvectionFerrofluidConvective heat transferMass transferCompressibilityThermodynamicsThermomagnetic convectionRayleigh numberMechanicsCondensed Matter PhysicsThermal conductionElectronic Optical and Magnetic MaterialsJournal of Magnetism and Magnetic Materials
researchProduct

Building green covering for a sustainable use of energy

2013

Nowadays the growth of the cities increased built and paved areas, energy use and heat generation. The phenomenon of urban warming, called urban heat island, influences negatively outdoor comfort conditions, pollutants concentration, energy demand for air conditioning, as well as increases environmental impact due to the demand of energy generation. A sustainable technology for improving the energy efficiency of buildings is the use of green roofs and walls in order to reduce the energy consumption for conditioning in summer and improve the thermal insulation in winter. The use of green roofs and walls can contribute to mitigate the phenomenon of heat island, the emissions of greenhouse gas…

EngineeringBioengineeringAir-conditioning; Energy savings; Green roofs; Green walls; Urban ecology; Industrial and Manufacturing Engineering; Mechanical Engineering; BioengineeringEnergy savingsair-conditioning energy savings urban ecology green roofs green walls.Industrial and Manufacturing Engineeringlcsh:Agriculturegreen roofsenergy savingSustainable designUrban heat islandlcsh:Agriculture (General)business.industryair-conditioningMechanical EngineeringEnvironmental engineeringlcsh:SThermal comfortEnergy consumptiongreen wallslcsh:S1-972urban ecologyAir conditioningHeat generationSustainabilitybusinessEfficient energy useair-conditioning; energy saving; urban ecology; green roofs; green walls
researchProduct

Physical modeling of heat and moisture transfer in wet bio-sourced insulating materials.

2018

Simultaneous heat and moisture transfers in bio-sourced insulating materials are significant phenomena in thermal metrology. The present study focuses on these phenomena by experimental and numerical approaches based on the asymmetric hot-plate method. In this paper, a bio-sourced insulating material based on flax fibers is developed. The thermal and hygric properties of the sample are then investigated in the humid atmosphere. The temperature is maintained at 30 °C, and the relative humidity varies between 30% and 90% RH. A physics-based model of simultaneous heat and moisture transfer is developed for thermal conductivity estimation. This model is discretized with finite difference method…

Moisture[SHS.INFO]Humanities and Social Sciences/Library and information sciences0211 other engineering and technologiesFinite difference method02 engineering and technology021001 nanoscience & nanotechnologyAtmosphereThermal conductivity measurementThermal conductivity021105 building & constructionHeat transferThermalRelative humidityComposite material0210 nano-technologyInstrumentationComputingMilieux_MISCELLANEOUSThe Review of scientific instruments
researchProduct

From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

2013

We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additi…

PhysicsCollective behaviorCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsScatteringbusiness.industryNanowireFOS: Physical sciencesGeneral Physics and AstronomyKinetic energySemiconductorThermal conductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Thin filmbusinessNanoscopic scaleJournal of Applied Physics
researchProduct

Phase diagram of calcium at high pressure and high temperature

2018

Resistively heated diamond-anvil cells have been used together with synchrotron x-ray diffraction to investigate the phase diagram of calcium up to 50 GPa and 800 K. The phase boundaries between the Ca-I (fcc), Ca-II (bcc), and Ca-III (simple cubic, sc) phases have been determined at these pressure-temperature conditions, and the ambient temperature equation of state has been generated. The equation of state parameters at ambient temperature have been determined from the experimental compression curve of the observed phases by using third-order Birch-Murnaghan and Vinet equations. A thermal equation of state was also determined for Ca-I and Ca-II by combining the room-temperature Birch-Murn…

DiffractionEquation of stateMaterials sciencePhysics and Astronomy (miscellaneous)Thermodynamics02 engineering and technologyCubic crystal system01 natural sciencesThermal expansionPhysics::GeophysicsSynchrotronCondensed Matter::Materials SciencePhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsPhase diagramAlkaline earth metalTransitionsEquation-of-state021001 nanoscience & nanotechnologyX-ray crystallographyX-Ray-diffractionAlkaline-earth metals0210 nano-technology
researchProduct

Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

2013

Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron m…

AnataseMaterials sciencePolymers and PlasticsSurface PropertiesAcrylic Resins02 engineering and technologyThermal treatmentLithium010402 general chemistry01 natural scienceschemistry.chemical_compoundElectric Power SuppliesMaterials ChemistryCopolymerReversible addition−fragmentation chain-transfer polymerizationComposite materialParticle Sizechemistry.chemical_classificationIonsTitaniumNanotubesMolecular StructureOrganic ChemistryPolyacrylonitrileTemperaturePolymerElectrochemical Techniques021001 nanoscience & nanotechnologyCarbon0104 chemical scienceschemistryTransmission electron microscopyNanorod0210 nano-technologyMacromolecular rapid communications
researchProduct